Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).
Landry, G. et al. Mitigation potential of ecosystem-based forest management under climate change: A case study in the boreal-temperate forest ecotone. Forests 12, 1667 (2021).
Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
Ameray, A., Bergeron, Y., Valeria, O., Girona, M. & Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, tropical, and temperate forests. Curr. For. Rep. (2021).
Bergeron, Y., Gauthier, S., Flannigan, M. & Kafka, V. Fire regimes at the transition between Mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology 85, 1916–1932 (2004).
Bergeron, Y. et al. Past, current, and future fire frequencies in Quebec’s commercial forests: Implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Can. J. For. Res. 36, 2737–2744 (2006).
Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P. & Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can. J. For. Res. 31, 384–391 (2001).
Navarro, L., Morin, H., Bergeron, Y. & Girona, M. M. Changes in spatiotemporal patterns of 20th century spruce budworm outbreaks in eastern Canadian boreal forests. Front. Plant Sci. 9, 1905 (2018).
Bouchard, M., Pothier, D. & Ruel, J.-C. Stand-replacing windthrow in the boreal forests of eastern Quebec. Can. J. For. Res. 39, 481–487 (2009).
Boulanger, Y., Gauthier, S. & Burton, P. J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 44, 365–376 (2014).
Augustin, F. et al. Projected changes in fire activity and severity feedback in the spruce—feather moss forest of western Quebec, Canada. Trees For. People 8, 100229 (2022).
Ameray, A., Bergeron, Y. & Cavard, X. Climate change may increase Quebec boreal forest productivity in high latitudes by shifting its current composition. Front. For. Glob. Chang. 6, 20 (2023).
Boulanger, Y. et al. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can. J. For. Res. 42, 1264–1276 (2012).
Liu, Z. et al. Simulation and analysis of the effect of a spruce budworm outbreak on carbon dynamics in boreal forests of Quebec. Ecosystems 22, 1838–1851 (2019).
Dymond, C. et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13, 917–931 (2010).
Mayer, M., Sandén, H., Rewald, B., Godbold, D. L. & Katzensteiner, K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct. Ecol. 31, 1163–1172 (2017).
Mitchell, S. J. Wind as a natural disturbance agent in forests: A synthesis. For. An Int. J. For. Res. 86, 147–157 (2012).
Don, A. et al. No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manage. 276, 239–246 (2012).
Kurz, W. A. et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Modell. 220, 480–504 (2009).
Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58, 701–714 (2008).
Gustafson, E. J., Miranda, B. & Sturtevant, B. Can future CO2 concentrations mitigate the negative effects of high temperature and longer droughts on forest growth?. Forests 9, 664 (2018).
IPCC. Climate Change: The 5th Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
Peng, et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467 (2011).
Zhuo, W., Dai, E., Wu, Z. & Lin, M. Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone. Sci. Total Environ. 706, 135746 (2020).
Gustafson, E. J. et al. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Glob. Chang. Biol. 21, 843–856 (2015).
De Bruijn, A. et al. Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol. Modell. 287, 44–57 (2014).
Taylor, A. R., Wang, J. R. & Kurz, W. A. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. For. Ecol. Manage. 255, 3632–3641 (2008).
Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochem. Cycles 29, 775–792 (2015).
Liu, S. et al. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001585 (2011).
Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).
Lee, J., Morrison, I. K., Leblanc, J.-D., Dumas, M. T. & Cameron, D. A. Carbon sequestration in trees and regrowth vegetation as affected by clearcut and partial cut harvesting in a second-growth boreal Mixedwood. For. Ecol. Manage. 169, 83–101 (2002).
Noormets, A. et al. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manage. 355, 124–140 (2015).
Pamerleau-Couture, É., Krause, C., Pothier, D. & Weiskittel, A. Effect of three partial cutting practices on stand structure and growth of residual black spruce trees in north-eastern Quebec. For. An Int. J. For. Res. 88, 471–483 (2015).
MRNF. Forêt ouverte: inventaire forestier national. https://www.foretouverte.gouv.qc.ca/?context=_catalogue_complet&zoom=6¢er=-73,51&invisiblelayers=*&visiblelayers=pee_index_pdf_mai2015,fond&llcv=1 (2010).
Peng, C., Liu, J., Dang, Q., Apps, M. J. & Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Modell. 153, 109–130 (2002).
Jobidon, R. & Bergeron, Y. Assessing the biophysical potential for sustainable forest management: a case study from Quebec’s boreal forest/Evaluation du potentiel biophysique pour un amenagement durable des forets: le cas de la foret boreale du Quebec. Can. J. For. Res. 45, v–v (2015).
Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631 (2016).
Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013—The Physical Science Basis: Contribution of Working group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change 1029–1136 (Cambridge University Press, 2013).
Gustafson, E. & Miranda, B. PnET-Succession – LANDIS-II. 74 http://www.landis-ii.org/extensions/pnet-succession (2019).
Aber, J. D. & Federer, C. A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92, 463–474 (1992).
Gustafson, E. J., Kern, C. C. & Kabrick, J. M. Can assisted tree migration today sustain forest ecosystem goods and services for the future?. For. Ecol. Manage. 529, 120723 (2023).
Pothier, D. & Savard, F. Actualisation des tables de production pour les principales espèces du Québec. Gouv. du Québec, ministère des Ressources Nat. Bibliothèque Natl. du Québec. RN98–3054 (1998).
Boulanger, Y. et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Landsc. Ecol. 32, 1415–1431 (2017).
Duchesne, L. & Ouimet, R. Digital mapping of soil texture in ecoforest polygons in Quebec. Canada. PeerJ 9, e11685 (2021).
Scheller, R. M. & Domingo, J. B. LANDIS-II Base Fire v4.0 Extension User Guide. Reproduction 0–9 (2018).
Scheller, R. M. et al. LANDIS-II Base Wind v3.0 Extension User Guide. 1–11 (2018).
Scheller, R. M., Sturtevant, B. R., Gustafson, E. J., Miranda, B. R. & Zollner, P. A. Biomass Harvest v4.3 LANDIS-II Extension User Guide. 0–9 (2019).
Sturtevant, B. R., He, H. S., Scheller, R. M. & Miranda, B. R. LANDIS-II Biological Disturbance Agent v2 . 0 Extension User Guide. 0–19 (2019).
Molina, E. et al. Projecting future aboveground biomass and productivity of managed eastern Canadian mixedwood boreal forest in response to climate change. For. Ecol. Manage. 487, 119016 (2021).
Tremblay, J. A. et al. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest. PLoS ONE 13, e0191645 (2018).
Boulanger, Y. et al. Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada. Landsc. Ecol. 34, 159–174 (2019).
Forestier en chef. Forestier en chef—Possibilités forestières 2023–2028. https://forestierenchef.gouv.qc.ca/possibilites-forestieres/ (2022).
Krofcheck, D. J., Remy, C. C., Keyser, A. R. & Hurteau, M. D. Optimizing forest management stabilizes carbon under projected climate and wildfires. J. Geophys. Res. Biogeosci. 124, 3075–3087 (2019).
D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).
Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
Dhital, N. et al. Adaptation potential of ecosystem-based management to climate change in the eastern Canadian boreal forest. J. Environ. Plan. Manag. 58, 2228–2249 (2015).
Cavard, X., Bergeron, Y., Chen, H. Y. H. & Pare, D. Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can. J. For. Res. 40, 37–47 (2010).
Cavard, X. et al. Competition and facilitation between tree species change with stand development. Oikos 120, 1683–1695 (2011).
Stuenzi, S. M. & Schaepman-Strub, G. Vegetation trajectories and shortwave radiative forcing following boreal forest disturbance in eastern Siberia. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2019JG005395 (2020).
Paradis, L., Thiffault, E. & Achim, A. Comparison of carbon balance and climate change mitigation potential of forest management strategies in the boreal forest of Quebec (Canada). For. An Int. J. For. Res. 92, 264–277 (2019).
Boulanger, Y. & Puigdevall, P. J. Boreal forests will be more severely affected by projected anthropogenic climate forcing than Mixedwood and northern hardwood forests in eastern Canada. Landsc. Ecol. 36, 1725–1740 (2021).
Peng, C., Jiang, H., Apps, M. J. & Zhang, Y. Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: A process model simulation. Ecol. Modell. 155, 177–189 (2002).
Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).
Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manage. 437, 201–210 (2019).
Bergeron, Y. et al. Projections of future forest age class structure under the influence of fire and harvesting: Implications for forest management in the boreal forest of eastern Canada. For. An Int. J. For. Res. 90, 485–495 (2017).
Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. For. Res. 49, 680–691 (2019).
Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260–292 (2013).
Dulamsuren, C. Organic carbon stock losses by disturbance: Comparing broadleaved pioneer and late-successional conifer forests in Mongolia’s boreal forest. For. Ecol. Manage. 499, 119636 (2021).
Guignabert, A. et al. Combining partial cutting and direct seeding to overcome regeneration failures in dune forests. For. Ecol. Manage. 476, 118466 (2020).
Simard, W. S. et al. Harvest intensity effects on carbon stocks and biodiversity are dependent on regional climate in Douglas-fir forests of British Columbia. Front. Forests Glob. Change https://doi.org/10.3389/ffgc.2020.00088 (2020).
Montoro Girona, M., Morin, H., Lussier, J.-M. & Ruel, J.-C. Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands. Front. For. Glob. Chang. https://doi.org/10.3389/ffgc.2019.00004 (2019).
Boucher, J.-F., Tremblay, P., Gaboury, S. & Villeneuve, C. Can boreal afforestation help offset incompressible GHG emissions from Canadian industries?. Process Saf. Environ. Prot. 90, 459–466 (2012).
Gaboury, S., Boucher, J.-F., Villeneuve, C., Lord, D. & Gagnon, R. Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. For. Ecol. Manage. 257, 483–494 (2009).
FAO. Global Forest Resources Assessment 2020 Main report. Forestry Chronicle vol. 16 https://www.fao.org/documents/card/en/c/ca9825en (2020).
Harvey, B. D., Leduc, A., Gauthier, S. & Bergeron, Y. Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For. Ecol. Manage. 155, 369–385 (2002).
Martin, M. et al. Irregular forest structures originating after fire: An opportunity to promote alternatives to even-aged management in boreal forests. J. Appl. Ecol. 59, 1792–1803 (2022).
Bergeron, Y., Harvey, B., Leduc, A. & Gauthier, S. Forest management guidelines based on natural disturbance dynamics: Stand-and forest-level considerations. For. Chron. 75, 49–54 (1999).
Prima, M.-C. et al. A landscape experiment of spatial network robustness and space-use reorganization following habitat fragmentation. Funct. Ecol. 33, 1663–1673 (2019).
St-Laurent, M.-H. et al. Lowering the rate of timber harvesting to mitigate impacts of climate change on boreal caribou habitat quality in eastern Canada. Sci. Total Environ. 838, 156244 (2022).
Gewehr, S., Drobyshev, I., Berninger, F. & Bergeron, Y. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44, 487–498 (2014).
Laganière, J. et al. Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems 16, 852–865 (2013).
Gustafson, E. J., Miranda, B. R., Dreaden, T. J., Pinchot, C. C. & Jacobs, D. F. Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced American chestnut. Ecosphere 13, e3917 (2022).
Gustafson, E. J. et al. Climate adaptive silviculture strategies: How do they impact growth, yield, diversity and value in forested landscapes?. For. Ecol. Manage. 470–471, 118208 (2020).