Modelling the potential of forest management to mitigate climate change in Eastern Canadian forests

  • Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Landry, G. et al. Mitigation potential of ecosystem-based forest management under climate change: A case study in the boreal-temperate forest ecotone. Forests 12, 1667 (2021).

    Article 

    Google Scholar
     

  • Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ameray, A., Bergeron, Y., Valeria, O., Girona, M. & Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, tropical, and temperate forests. Curr. For. Rep. (2021).

  • Bergeron, Y., Gauthier, S., Flannigan, M. & Kafka, V. Fire regimes at the transition between Mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology 85, 1916–1932 (2004).

    Article 

    Google Scholar
     

  • Bergeron, Y. et al. Past, current, and future fire frequencies in Quebec’s commercial forests: Implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Can. J. For. Res. 36, 2737–2744 (2006).

    Article 

    Google Scholar
     

  • Bergeron, Y., Gauthier, S., Kafka, V., Lefort, P. & Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can. J. For. Res. 31, 384–391 (2001).

    Article 

    Google Scholar
     

  • Navarro, L., Morin, H., Bergeron, Y. & Girona, M. M. Changes in spatiotemporal patterns of 20th century spruce budworm outbreaks in eastern Canadian boreal forests. Front. Plant Sci. 9, 1905 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouchard, M., Pothier, D. & Ruel, J.-C. Stand-replacing windthrow in the boreal forests of eastern Quebec. Can. J. For. Res. 39, 481–487 (2009).

    Article 

    Google Scholar
     

  • Boulanger, Y., Gauthier, S. & Burton, P. J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 44, 365–376 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Augustin, F. et al. Projected changes in fire activity and severity feedback in the spruce—feather moss forest of western Quebec, Canada. Trees For. People 8, 100229 (2022).

    Article 

    Google Scholar
     

  • Ameray, A., Bergeron, Y. & Cavard, X. Climate change may increase Quebec boreal forest productivity in high latitudes by shifting its current composition. Front. For. Glob. Chang. 6, 20 (2023).

    Article 

    Google Scholar
     

  • Boulanger, Y. et al. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can. J. For. Res. 42, 1264–1276 (2012).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Simulation and analysis of the effect of a spruce budworm outbreak on carbon dynamics in boreal forests of Quebec. Ecosystems 22, 1838–1851 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dymond, C. et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13, 917–931 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mayer, M., Sandén, H., Rewald, B., Godbold, D. L. & Katzensteiner, K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct. Ecol. 31, 1163–1172 (2017).

    Article 

    Google Scholar
     

  • Mitchell, S. J. Wind as a natural disturbance agent in forests: A synthesis. For. An Int. J. For. Res. 86, 147–157 (2012).


    Google Scholar
     

  • Don, A. et al. No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manage. 276, 239–246 (2012).

    Article 

    Google Scholar
     

  • Kurz, W. A. et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Modell. 220, 480–504 (2009).

    Article 

    Google Scholar
     

  • Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58, 701–714 (2008).

    Article 

    Google Scholar
     

  • Gustafson, E. J., Miranda, B. & Sturtevant, B. Can future CO2 concentrations mitigate the negative effects of high temperature and longer droughts on forest growth?. Forests 9, 664 (2018).

    Article 

    Google Scholar
     

  • IPCC. Climate Change: The 5th Assessment Report of the Intergovernmental Panel on Climate Change. (2014).

  • Peng, et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhuo, W., Dai, E., Wu, Z. & Lin, M. Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone. Sci. Total Environ. 706, 135746 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gustafson, E. J. et al. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Glob. Chang. Biol. 21, 843–856 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • De Bruijn, A. et al. Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol. Modell. 287, 44–57 (2014).

    Article 

    Google Scholar
     

  • Taylor, A. R., Wang, J. R. & Kurz, W. A. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. For. Ecol. Manage. 255, 3632–3641 (2008).

    Article 

    Google Scholar
     

  • Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochem. Cycles 29, 775–792 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001585 (2011).

    Article 

    Google Scholar
     

  • Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J., Morrison, I. K., Leblanc, J.-D., Dumas, M. T. & Cameron, D. A. Carbon sequestration in trees and regrowth vegetation as affected by clearcut and partial cut harvesting in a second-growth boreal Mixedwood. For. Ecol. Manage. 169, 83–101 (2002).

    Article 

    Google Scholar
     

  • Noormets, A. et al. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manage. 355, 124–140 (2015).

    Article 

    Google Scholar
     

  • Pamerleau-Couture, É., Krause, C., Pothier, D. & Weiskittel, A. Effect of three partial cutting practices on stand structure and growth of residual black spruce trees in north-eastern Quebec. For. An Int. J. For. Res. 88, 471–483 (2015).


    Google Scholar
     

  • MRNF. Forêt ouverte: inventaire forestier national. https://www.foretouverte.gouv.qc.ca/?context=_catalogue_complet&zoom=6&center=-73,51&invisiblelayers=*&visiblelayers=pee_index_pdf_mai2015,fond&llcv=1 (2010).

  • Peng, C., Liu, J., Dang, Q., Apps, M. J. & Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Modell. 153, 109–130 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jobidon, R. & Bergeron, Y. Assessing the biophysical potential for sustainable forest management: a case study from Quebec’s boreal forest/Evaluation du potentiel biophysique pour un amenagement durable des forets: le cas de la foret boreale du Quebec. Can. J. For. Res. 45, v–v (2015).


    Google Scholar
     

  • Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013—The Physical Science Basis: Contribution of Working group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change 1029–1136 (Cambridge University Press, 2013).

  • Gustafson, E. & Miranda, B. PnET-Succession – LANDIS-II. 74 http://www.landis-ii.org/extensions/pnet-succession (2019).

  • Aber, J. D. & Federer, C. A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92, 463–474 (1992).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gustafson, E. J., Kern, C. C. & Kabrick, J. M. Can assisted tree migration today sustain forest ecosystem goods and services for the future?. For. Ecol. Manage. 529, 120723 (2023).

    Article 

    Google Scholar
     

  • Pothier, D. & Savard, F. Actualisation des tables de production pour les principales espèces du Québec. Gouv. du Québec, ministère des Ressources Nat. Bibliothèque Natl. du Québec. RN98–3054 (1998).

  • Boulanger, Y. et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Landsc. Ecol. 32, 1415–1431 (2017).

    Article 

    Google Scholar
     

  • Duchesne, L. & Ouimet, R. Digital mapping of soil texture in ecoforest polygons in Quebec. Canada. PeerJ 9, e11685 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Scheller, R. M. & Domingo, J. B. LANDIS-II Base Fire v4.0 Extension User Guide. Reproduction 0–9 (2018).

  • Scheller, R. M. et al. LANDIS-II Base Wind v3.0 Extension User Guide. 1–11 (2018).

  • Scheller, R. M., Sturtevant, B. R., Gustafson, E. J., Miranda, B. R. & Zollner, P. A. Biomass Harvest v4.3 LANDIS-II Extension User Guide. 0–9 (2019).

  • Sturtevant, B. R., He, H. S., Scheller, R. M. & Miranda, B. R. LANDIS-II Biological Disturbance Agent v2 . 0 Extension User Guide. 0–19 (2019).

  • Molina, E. et al. Projecting future aboveground biomass and productivity of managed eastern Canadian mixedwood boreal forest in response to climate change. For. Ecol. Manage. 487, 119016 (2021).

    Article 

    Google Scholar
     

  • Tremblay, J. A. et al. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest. PLoS ONE 13, e0191645 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boulanger, Y. et al. Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada. Landsc. Ecol. 34, 159–174 (2019).

    Article 

    Google Scholar
     

  • Forestier en chef. Forestier en chef—Possibilités forestières 2023–2028. https://forestierenchef.gouv.qc.ca/possibilites-forestieres/ (2022).

  • Krofcheck, D. J., Remy, C. C., Keyser, A. R. & Hurteau, M. D. Optimizing forest management stabilizes carbon under projected climate and wildfires. J. Geophys. Res. Biogeosci. 124, 3075–3087 (2019).

    Article 

    Google Scholar
     

  • D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dhital, N. et al. Adaptation potential of ecosystem-based management to climate change in the eastern Canadian boreal forest. J. Environ. Plan. Manag. 58, 2228–2249 (2015).

    Article 

    Google Scholar
     

  • Cavard, X., Bergeron, Y., Chen, H. Y. H. & Pare, D. Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can. J. For. Res. 40, 37–47 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cavard, X. et al. Competition and facilitation between tree species change with stand development. Oikos 120, 1683–1695 (2011).

    Article 

    Google Scholar
     

  • Stuenzi, S. M. & Schaepman-Strub, G. Vegetation trajectories and shortwave radiative forcing following boreal forest disturbance in eastern Siberia. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2019JG005395 (2020).

    Article 

    Google Scholar
     

  • Paradis, L., Thiffault, E. & Achim, A. Comparison of carbon balance and climate change mitigation potential of forest management strategies in the boreal forest of Quebec (Canada). For. An Int. J. For. Res. 92, 264–277 (2019).


    Google Scholar
     

  • Boulanger, Y. & Puigdevall, P. J. Boreal forests will be more severely affected by projected anthropogenic climate forcing than Mixedwood and northern hardwood forests in eastern Canada. Landsc. Ecol. 36, 1725–1740 (2021).

    Article 

    Google Scholar
     

  • Peng, C., Jiang, H., Apps, M. J. & Zhang, Y. Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: A process model simulation. Ecol. Modell. 155, 177–189 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).

    Article 

    Google Scholar
     

  • Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manage. 437, 201–210 (2019).

    Article 

    Google Scholar
     

  • Bergeron, Y. et al. Projections of future forest age class structure under the influence of fire and harvesting: Implications for forest management in the boreal forest of eastern Canada. For. An Int. J. For. Res. 90, 485–495 (2017).


    Google Scholar
     

  • Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. For. Res. 49, 680–691 (2019).

    Article 

    Google Scholar
     

  • Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260–292 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dulamsuren, C. Organic carbon stock losses by disturbance: Comparing broadleaved pioneer and late-successional conifer forests in Mongolia’s boreal forest. For. Ecol. Manage. 499, 119636 (2021).

    Article 

    Google Scholar
     

  • Guignabert, A. et al. Combining partial cutting and direct seeding to overcome regeneration failures in dune forests. For. Ecol. Manage. 476, 118466 (2020).

    Article 

    Google Scholar
     

  • Simard, W. S. et al. Harvest intensity effects on carbon stocks and biodiversity are dependent on regional climate in Douglas-fir forests of British Columbia. Front. Forests Glob. Change https://doi.org/10.3389/ffgc.2020.00088 (2020).

    Article 

    Google Scholar
     

  • Montoro Girona, M., Morin, H., Lussier, J.-M. & Ruel, J.-C. Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands. Front. For. Glob. Chang. https://doi.org/10.3389/ffgc.2019.00004 (2019).

    Article 

    Google Scholar
     

  • Boucher, J.-F., Tremblay, P., Gaboury, S. & Villeneuve, C. Can boreal afforestation help offset incompressible GHG emissions from Canadian industries?. Process Saf. Environ. Prot. 90, 459–466 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gaboury, S., Boucher, J.-F., Villeneuve, C., Lord, D. & Gagnon, R. Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. For. Ecol. Manage. 257, 483–494 (2009).

    Article 

    Google Scholar
     

  • FAO. Global Forest Resources Assessment 2020 Main report. Forestry Chronicle vol. 16 https://www.fao.org/documents/card/en/c/ca9825en (2020).

  • Harvey, B. D., Leduc, A., Gauthier, S. & Bergeron, Y. Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For. Ecol. Manage. 155, 369–385 (2002).

    Article 

    Google Scholar
     

  • Martin, M. et al. Irregular forest structures originating after fire: An opportunity to promote alternatives to even-aged management in boreal forests. J. Appl. Ecol. 59, 1792–1803 (2022).

    Article 

    Google Scholar
     

  • Bergeron, Y., Harvey, B., Leduc, A. & Gauthier, S. Forest management guidelines based on natural disturbance dynamics: Stand-and forest-level considerations. For. Chron. 75, 49–54 (1999).

    Article 

    Google Scholar
     

  • Prima, M.-C. et al. A landscape experiment of spatial network robustness and space-use reorganization following habitat fragmentation. Funct. Ecol. 33, 1663–1673 (2019).

    Article 

    Google Scholar
     

  • St-Laurent, M.-H. et al. Lowering the rate of timber harvesting to mitigate impacts of climate change on boreal caribou habitat quality in eastern Canada. Sci. Total Environ. 838, 156244 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gewehr, S., Drobyshev, I., Berninger, F. & Bergeron, Y. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44, 487–498 (2014).

    Article 

    Google Scholar
     

  • Laganière, J. et al. Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems 16, 852–865 (2013).

    Article 

    Google Scholar
     

  • Gustafson, E. J., Miranda, B. R., Dreaden, T. J., Pinchot, C. C. & Jacobs, D. F. Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced American chestnut. Ecosphere 13, e3917 (2022).

    Article 

    Google Scholar
     

  • Gustafson, E. J. et al. Climate adaptive silviculture strategies: How do they impact growth, yield, diversity and value in forested landscapes?. For. Ecol. Manage. 470–471, 118208 (2020).

    Article 

    Google Scholar
     

  • Check Also

    Extreme El Niño Can "Switch Off" South America’s Forest Carbon Sink

    Extreme El Niño Can “Switch Off” South America’s Forest Carbon Sink

    Tropical forests can help to mellow the impact of climate change by acting as a …

    Leave a Reply

    Your email address will not be published. Required fields are marked *