Evaluation of influences of forest cover change on landslides by comparing rainfall-induced landslides in Japanese artificial forests with different ages

  • Saito, H., Nakayama, D. & Matsuyama, H. Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology 118(1–2), 167–175 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Sidle, R. C. & Bogaard, T. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Sci. Rev. 159, 275–291 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zêzere, J. L., Trigo, R. M. & Trigo, I. F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 5(3), 331–344 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Fernandes, N. F., Coelho Netto, A. L. & Lacerda, W. A. Subsurface hydrology of layered colluvium mantles in unchannelled valleys—South-Eastern Brazil. Earth Surf. Process. Landf. 19(7), 609–626 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Sidle, R.C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (eds. Sidle, R.C. & Ochiai, H.). 41–119 (American Geophysical Union, 2006).

  • Chigira, M., Tsou, C. Y., Matsushi, Y., Hiraishi, N. & Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 201, 479–493 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Regmi, A. D., Yoshida, K., Dhital, M. R. & Devkota, K. Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10(1), 1–13 (2013).

    Article 

    Google Scholar
     

  • Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. CATENA 51(3–4), 297–314 (2003).

    Article 

    Google Scholar
     

  • Phillips, C., Hales, T., Smith, H. & Basher, L. Shallow landslides and vegetation at the catchment scale: A perspective. Ecol. Eng. 173, 106436. https://doi.org/10.1016/j.ecoleng.2021.106436 (2021).

    Article 

    Google Scholar
     

  • Imaizumi, F., Sidle, R. C. & Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Process. Landf. 33(6), 827–840 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Yunus, A. P., Fan, X., Subramanian, S. S., Jie, D. & Xu, Q. Unraveling the drivers of intensified landslide regimes in Western Ghats. India. Sci. Total Environ. 770, 145357. https://doi.org/10.1016/j.scitotenv.2021.145357 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Z. Root reinforcement models: Classification, criticism and perspectives. Plant Soil 472(1–2), 17–28 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Masi, E. B., Segoni, S. & Tofani, V. Root reinforcement in slope stability models: A review. Geoscience 11(5), 212. https://doi.org/10.3390/geosciences11050212 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dhakel, A. S. Long-term modelling of landslides for different forest management practices. Earth Surf. Process. Landf. 28(8), 853–868 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Imaizumi, F. & Sidle, R. C. Effect of forest harvesting on hydrogeomorphic processes in steep terrain of central Japan. Geomorphology 169, 109–122 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Montgomery, D. R., Schmidt, K. M., Greenberg, H. M. & Dietrich, W. E. Forest clearing and regional landsliding. Geology 28(4), 311–314 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Saito, H., Murakami, W., Daimaru, H. & Oguchi, T. Effect of forest clear-cutting on landslide occurrences: Analysis of rainfall thresholds at Mt. Ichifusa, Japan. Geomorphology 276, 1–7 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sidle, R. C. A conceptual model of changes in root cohesion in response to vegetation management. J. Environ. Qual. 20(1), 43–52 (1991).

    Article 

    Google Scholar
     

  • Turner, T. R. et al. Landslide densities associated with rainfall, stand age, and topography on forested landscapes, southwestern Washington, USA. For. Ecol. Manag. 259(12), 2233–2247 (2010).

    Article 

    Google Scholar
     

  • Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. B 62(1–2), 23–27 (1980).


    Google Scholar
     

  • Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C. P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 5, 3–17 (2008).

    Article 

    Google Scholar
     

  • Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A. & Ojha, T. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63(3–4), 131–143 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ishihara, Y. & Kobatake, S. Runoff model for flood forecasting. Bull. Dis. Prev. Res. Inst. 29(1), 27–43 (1979).


    Google Scholar
     

  • Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S. & Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 7(3), 325–338 (2010).

    Article 

    Google Scholar
     

  • Sato, T. & Shuin, Y. Relationship between landslides and long-term rainfall trends. Arab. J. Geosci. 15, 1239. https://doi.org/10.1007/s12517-022-10532-5 (2022).

    Article 

    Google Scholar
     

  • Arnone, E., Noto, L. V., Lepore, C. & Bras, R. L. Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale. Geomorphology 133(3–4), 121–131 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Crosta, G. B. & Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 3(1/2), 81–93 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Gutierrez-Martin, A. A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation. Geomorphology 359, 107121. https://doi.org/10.1016/j.geomorph.2020.107121 (2020).

    Article 

    Google Scholar
     

  • Numamoto, S., Suzuki, M. & Ohta, T. Decreasing trend of deaths and missings 276 Caused by sediment-related disasters in the last fifty years in Japan. J. Jpn. Soc. Erosion Control Eng. 51(6), 3–12 (1999) (in Japanese with English abstract).


    Google Scholar
     

  • Sato, T. & Shuin, Y. Impact of national-scale changes in forest cover on floods and rainfall-induced sediment-related disasters in Japan. J. For. Res. 28(2), 106–110 (2023).

    Article 

    Google Scholar
     

  • Shinohara, Y. & Kume, T. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total Environ. 827, 154392. https://doi.org/10.1016/j.scitotenv.2022.154392 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsukamoto, Y. Shallow Landslides, Bareland, Erosion control works. J. Jpn. Soc. Erosion Control Eng. 52(1), 28–34 (1999) (in Japanese with English abstract).


    Google Scholar
     

  • Ishikawa, Y. et al. Debris disasters caused by Typhoon Wipha (T 1326) in Izu Oshima on Oct 16, 2013. J. Jpn. Soc. Erosion Control Eng. 66(5), 61–72 (2014) ((in Japanese)).


    Google Scholar
     

  • Marutani, T. et al. Sediment-related disasters by a heavy rainfall in the northern part of Kyushu-Island, Japan in July 2017. J. Jpn. Soc. Erosion Control Eng. 70(4), 31–42 (2017) (in Japanese with English abstract).


    Google Scholar
     

  • Ministry of Land, Infrastructure, Transport and Tourism. Summary of sediment-related disasters by a heavy rainfall in the northern part of Kyushu-Island, Japan in July 2017 https://www.mlit.go.jp/river/sabo/h29_kyushu_gouu/gaiyou.pdf (2017) (in Japanese).

  • Takahashi, T. et al. New frontiers in Japanese Forest Policy: Addressing ecosystem disservices in the 21st century. Ambio 50, 2272–2285 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyanagi, K., Yamada, T. & Ishida, K. Rediscovering wood-laden debris flow studies: A perspective from Japan. Earth Surf. Process. Landf. 48(1), 104–118 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ishikawa, Y., Mizuyama, T. & Fukuzawa, M. Generation and flow mechanisms of floating logs associated with Debris flow. J. Jpn. Soc. Erosion Control Eng. 42(3), 4–10 (1989) (in Japanese with English abstract).


    Google Scholar
     

  • Kubota, T. Characteristics of driftwood of heavy rainfall disaster in the northern part of Kyushu-Island, Japan in July 2017. Water Sci. 62(6), 10–22 (2018) (in Japanese).


    Google Scholar
     

  • Mizuyama, T., Ishikawa, Y. & Kurihara, J. 1988 Debris-flow disasters in Hiroshima Prefecture. J. Jpn. Soc. Erosion Control Eng. 41(3), 48–49 (1988) (in Japanese with English abstract).


    Google Scholar
     

  • Koi, T. et al. Estimation of spatial and temporal distribution of sediment movement and evacuation in the northern Kyushu heavy rain in July 2017. J. Jpn. Soc. Erosion Control Eng. 73(3), 54–59 (2020) (in Japanese with English abstract).


    Google Scholar
     

  • Nakaya, H., Takiguchi, S. & Kanazawa, A. Reality of cliff failure disaster. Tech. Note Natl. Inst. Land Infrastruct. Manag. 1122, 1–203 (2020) (in Japanese).

  • Geological Survey of Japan, AIST. Seamless Digital Geological Map of Japan V2 1: 200,000. https://gbank.gsj.jp/seamless (2022).

  • Sabo Division, Hiroshima Prefecture. Rainfall-Induced Disaster Between 20 and 21 July 1988. Sediment-Related Disasters Portal Hiroshima. https://www.sabo.pref.hiroshima.lg.jp/portal/sonota/sabo/pdf/211_S63_gouu.pdf (1990) (in Japanese).

  • Saito, H., Nakayama, D. & Matsuyama, H. Two types of rainfall conditions associated with shallow landslide initiation in Japan as revealed by normalized soil water index. SALA 6, 57–60 (2010).


    Google Scholar
     

  • Jenkinson, A. F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 81(348), 158–171 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Hosking, J. R. M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodol.) 52(1), 105–124 (1990).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Comiti, F., Lucía, A. & Rickenmann, D. Large wood recruitment and transport during large floods: A review. Geomorphology 269(15), 23–39 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Iverson, R. M. Landslide triggering by rain infiltration. Water Resour. Res. 36(7), 1897–1910 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Imada, Y. et al. Advanced risk-based event attribution for heavy regional rainfall events. npj Clim. Atmos. Sci. 3, 37. https://doi.org/10.1038/s41612-020-00141-y (2020).

    Article 

    Google Scholar
     

  • de Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: Where do we stand?. Int. J. Disaster Risk Reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).

    Article 

    Google Scholar
     

  • Check Also

    Extreme El Niño Can "Switch Off" South America’s Forest Carbon Sink

    Extreme El Niño Can “Switch Off” South America’s Forest Carbon Sink

    Tropical forests can help to mellow the impact of climate change by acting as a …

    Leave a Reply

    Your email address will not be published. Required fields are marked *