Saito, H., Nakayama, D. & Matsuyama, H. Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology 118(1–2), 167–175 (2010).
Sidle, R. C. & Bogaard, T. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Sci. Rev. 159, 275–291 (2016).
Zêzere, J. L., Trigo, R. M. & Trigo, I. F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 5(3), 331–344 (2005).
Fernandes, N. F., Coelho Netto, A. L. & Lacerda, W. A. Subsurface hydrology of layered colluvium mantles in unchannelled valleys—South-Eastern Brazil. Earth Surf. Process. Landf. 19(7), 609–626 (1994).
Sidle, R.C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (eds. Sidle, R.C. & Ochiai, H.). 41–119 (American Geophysical Union, 2006).
Chigira, M., Tsou, C. Y., Matsushi, Y., Hiraishi, N. & Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 201, 479–493 (2013).
Regmi, A. D., Yoshida, K., Dhital, M. R. & Devkota, K. Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10(1), 1–13 (2013).
Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. CATENA 51(3–4), 297–314 (2003).
Phillips, C., Hales, T., Smith, H. & Basher, L. Shallow landslides and vegetation at the catchment scale: A perspective. Ecol. Eng. 173, 106436. https://doi.org/10.1016/j.ecoleng.2021.106436 (2021).
Imaizumi, F., Sidle, R. C. & Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Process. Landf. 33(6), 827–840 (2008).
Yunus, A. P., Fan, X., Subramanian, S. S., Jie, D. & Xu, Q. Unraveling the drivers of intensified landslide regimes in Western Ghats. India. Sci. Total Environ. 770, 145357. https://doi.org/10.1016/j.scitotenv.2021.145357 (2021).
Mao, Z. Root reinforcement models: Classification, criticism and perspectives. Plant Soil 472(1–2), 17–28 (2022).
Masi, E. B., Segoni, S. & Tofani, V. Root reinforcement in slope stability models: A review. Geoscience 11(5), 212. https://doi.org/10.3390/geosciences11050212 (2021).
Dhakel, A. S. Long-term modelling of landslides for different forest management practices. Earth Surf. Process. Landf. 28(8), 853–868 (2003).
Imaizumi, F. & Sidle, R. C. Effect of forest harvesting on hydrogeomorphic processes in steep terrain of central Japan. Geomorphology 169, 109–122 (2012).
Montgomery, D. R., Schmidt, K. M., Greenberg, H. M. & Dietrich, W. E. Forest clearing and regional landsliding. Geology 28(4), 311–314 (2000).
Saito, H., Murakami, W., Daimaru, H. & Oguchi, T. Effect of forest clear-cutting on landslide occurrences: Analysis of rainfall thresholds at Mt. Ichifusa, Japan. Geomorphology 276, 1–7 (2017).
Sidle, R. C. A conceptual model of changes in root cohesion in response to vegetation management. J. Environ. Qual. 20(1), 43–52 (1991).
Turner, T. R. et al. Landslide densities associated with rainfall, stand age, and topography on forested landscapes, southwestern Washington, USA. For. Ecol. Manag. 259(12), 2233–2247 (2010).
Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. B 62(1–2), 23–27 (1980).
Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C. P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 5, 3–17 (2008).
Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A. & Ojha, T. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63(3–4), 131–143 (2004).
Ishihara, Y. & Kobatake, S. Runoff model for flood forecasting. Bull. Dis. Prev. Res. Inst. 29(1), 27–43 (1979).
Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S. & Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 7(3), 325–338 (2010).
Sato, T. & Shuin, Y. Relationship between landslides and long-term rainfall trends. Arab. J. Geosci. 15, 1239. https://doi.org/10.1007/s12517-022-10532-5 (2022).
Arnone, E., Noto, L. V., Lepore, C. & Bras, R. L. Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale. Geomorphology 133(3–4), 121–131 (2011).
Crosta, G. B. & Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 3(1/2), 81–93 (2003).
Gutierrez-Martin, A. A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation. Geomorphology 359, 107121. https://doi.org/10.1016/j.geomorph.2020.107121 (2020).
Numamoto, S., Suzuki, M. & Ohta, T. Decreasing trend of deaths and missings 276 Caused by sediment-related disasters in the last fifty years in Japan. J. Jpn. Soc. Erosion Control Eng. 51(6), 3–12 (1999) (in Japanese with English abstract).
Sato, T. & Shuin, Y. Impact of national-scale changes in forest cover on floods and rainfall-induced sediment-related disasters in Japan. J. For. Res. 28(2), 106–110 (2023).
Shinohara, Y. & Kume, T. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total Environ. 827, 154392. https://doi.org/10.1016/j.scitotenv.2022.154392 (2022).
Tsukamoto, Y. Shallow Landslides, Bareland, Erosion control works. J. Jpn. Soc. Erosion Control Eng. 52(1), 28–34 (1999) (in Japanese with English abstract).
Ishikawa, Y. et al. Debris disasters caused by Typhoon Wipha (T 1326) in Izu Oshima on Oct 16, 2013. J. Jpn. Soc. Erosion Control Eng. 66(5), 61–72 (2014) ((in Japanese)).
Marutani, T. et al. Sediment-related disasters by a heavy rainfall in the northern part of Kyushu-Island, Japan in July 2017. J. Jpn. Soc. Erosion Control Eng. 70(4), 31–42 (2017) (in Japanese with English abstract).
Ministry of Land, Infrastructure, Transport and Tourism. Summary of sediment-related disasters by a heavy rainfall in the northern part of Kyushu-Island, Japan in July 2017 https://www.mlit.go.jp/river/sabo/h29_kyushu_gouu/gaiyou.pdf (2017) (in Japanese).
Takahashi, T. et al. New frontiers in Japanese Forest Policy: Addressing ecosystem disservices in the 21st century. Ambio 50, 2272–2285 (2021).
Koyanagi, K., Yamada, T. & Ishida, K. Rediscovering wood-laden debris flow studies: A perspective from Japan. Earth Surf. Process. Landf. 48(1), 104–118 (2023).
Ishikawa, Y., Mizuyama, T. & Fukuzawa, M. Generation and flow mechanisms of floating logs associated with Debris flow. J. Jpn. Soc. Erosion Control Eng. 42(3), 4–10 (1989) (in Japanese with English abstract).
Kubota, T. Characteristics of driftwood of heavy rainfall disaster in the northern part of Kyushu-Island, Japan in July 2017. Water Sci. 62(6), 10–22 (2018) (in Japanese).
Mizuyama, T., Ishikawa, Y. & Kurihara, J. 1988 Debris-flow disasters in Hiroshima Prefecture. J. Jpn. Soc. Erosion Control Eng. 41(3), 48–49 (1988) (in Japanese with English abstract).
Koi, T. et al. Estimation of spatial and temporal distribution of sediment movement and evacuation in the northern Kyushu heavy rain in July 2017. J. Jpn. Soc. Erosion Control Eng. 73(3), 54–59 (2020) (in Japanese with English abstract).
Nakaya, H., Takiguchi, S. & Kanazawa, A. Reality of cliff failure disaster. Tech. Note Natl. Inst. Land Infrastruct. Manag. 1122, 1–203 (2020) (in Japanese).
Geological Survey of Japan, AIST. Seamless Digital Geological Map of Japan V2 1: 200,000. https://gbank.gsj.jp/seamless (2022).
Sabo Division, Hiroshima Prefecture. Rainfall-Induced Disaster Between 20 and 21 July 1988. Sediment-Related Disasters Portal Hiroshima. https://www.sabo.pref.hiroshima.lg.jp/portal/sonota/sabo/pdf/211_S63_gouu.pdf (1990) (in Japanese).
Saito, H., Nakayama, D. & Matsuyama, H. Two types of rainfall conditions associated with shallow landslide initiation in Japan as revealed by normalized soil water index. SALA 6, 57–60 (2010).
Jenkinson, A. F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 81(348), 158–171 (1955).
Hosking, J. R. M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodol.) 52(1), 105–124 (1990).
Comiti, F., Lucía, A. & Rickenmann, D. Large wood recruitment and transport during large floods: A review. Geomorphology 269(15), 23–39 (2016).
Iverson, R. M. Landslide triggering by rain infiltration. Water Resour. Res. 36(7), 1897–1910 (2000).
Imada, Y. et al. Advanced risk-based event attribution for heavy regional rainfall events. npj Clim. Atmos. Sci. 3, 37. https://doi.org/10.1038/s41612-020-00141-y (2020).
de Jesús Arce-Mojica, T., Nehren, U., Sudmeier-Rieux, K., Miranda, P. J. & Anhuf, D. Nature-based solutions (NbS) for reducing the risk of shallow landslides: Where do we stand?. Int. J. Disaster Risk Reduct. 41, 101293. https://doi.org/10.1016/j.ijdrr.2019.101293 (2019).